Название: Планиметрия - Практические занятия (В.Г. Голобокова, О.М. Кравец, А.А. Осокина,)

Жанр: Гуманитарные

Просмотров: 1125


X. пропорциональные отрезки в прямоугольном треугольнике и круге. тригонометрические  функции острого  угла

 

Отрезок x называется средним пропорциональным (или средним геометрическим) между отрезками a и b,  если выполняется равенство     или   .

Рис. 11

 

Треугольник ABC – прямоугольный (рис. 11), C = 90°, СD перпендикулярна АВ, ВD и DА – проекции катетов ВС и АС на гипотенузу АВ.     Теоремы: 1) высота, проведенная из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между проекциями катетов на гипотенузу, т.е. ; 2) каждый катет – средняя пропорциональная величина между гипотенузой и проекцией этого катета на гипотенузу, т. е. , .

Теорема Пифагора. Квадрат гипотенузы равен сумме квадратов катетов.

 

 

Теорема. Если через точку, взятую внутри

круга, проведены диаметр и произвольная хорда,

то произведение длин отрезков диаметра рав-

но произведению длин отрезков хорды, т.е.  (рис. 12).

Рис. 12

 

Следствие. Произведения длин отрезков пересекающихся  хорд  равны,  т.е.

(рис. 12).

Теорема. Если из точки вне круга проведены касательная и се-кущая, то произведение всей секущей на ее внешнюю часть равно квадрату касательной, т.е.  (рис. 13).

Рис. 13

 

Определения. Синусом  острого угла в прямоугольном треугольнике называется отношение противолежащего этому углу катета к гипотенузе, косинусом – отношение прилежащего катета к гипотенузе, тангенсом отношение противолежащего катета к прилежащему, котангенсом – отношение прилежащего катета к противолежащему.

 

Задачи

 

Из точки А вне окружности проведены касательная и секущая. Расстояние от А до точки касания 16 см, а от А до одной из точек пересечения секущей с окружностью 32 см. Найдите радиус окружности, если секущая удалена от ее центра на 5 см.

 

Решение

 

Рис. 14

 

На рис. 14 АВ – касательная к окружности с центром O, AD – се-кущая. OK перпендикулярна DC, АВ = 16 см, АD = 32 см, OК = 5 см. По теореме о касательной и секущей   или , АС = 8 см. см. По теореме о хордах, пересекающихся внутри круга, , но DK = KC, так как EP – диаметр, перпендикулярный хорде DС. Получим . Заменим в этом равенстве ЕК на , КР на , DК на 12, получим:    OE = 13 см – искомый радиус.

104. Стороны прямоугольника 30 и 40 см. Найдите расстояние

от вершины прямоугольника до диагонали, не проходящей через эту вершину.

105. Периметр ромба равен 1 м. Одна диагональ длиннее другой на

1 дм. Вычислите диагонали ромба.

В круге по разные стороны от центра проведены параллельные хорды длиной 36 и 48 мм,  расстояние между ними 42 мм. Вычислите радиус круга.

Катеты прямоугольного треугольника относятся как 5 : 6, гипотенуза 122 см.  Найдите отрезки гипотенузы, отсекаемые высотой.

Касательная и секущая, проведенные из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, внутренняя часть секущей равна 10. Найдите радиус окружности.

К окружности с радиусом 7 см проведены две касательные из одной точки, удаленной от центра на 25 см. Найдите расстояние между точками касания.

Ширина кольца, образованного двумя концентрическими окружностями, равна 8 дм, хорда большей окружности, касательная к меньшей, равна 4 м. Найдите радиусы окружностей.

Радиус окружности 7 см. Из точки, удаленной от центра на

9 см, проведена секущая так, что она делится окружностью на равные части. Найдите длину этой секущей.

Касательная к окружности равна 20 см, а наибольшая секущая, проведенная из той же точки,  равна 50 см.  Найдите радиус.

Из одной точки к окружности проведены касательная и секущая, длина которой а, а её внутренний отрезок больше внешнего на длину касательной. Найдите длину касательной.

В круг радиусом R вписан равнобедренный треугольник, у которого сумма высоты и основания равна диаметру круга. Найдите высоту треугольника.

В равнобедренном треугольнике основание и боковая сторона равны соответственно 48 и 30 дм. Вычислите радиусы кругов, описанного и вписанного, и расстояние между их центрами.